The Living Machine Learning Reference

        • Gradient of a function
        • Minimizers and minima
          • Collinearity
          • Eigenvalues and eigenvectors
          • Linear combination
          • Linear transformation
          • Normal to a plane
          • Orthogonality
          • Quadratic form
          • Row- and column-major ordering (tensor vectorization)
          • Vector space
          • Diagonal matrix
          • Orthogonal matrix
          • Rotation matrix
          • Similar matrices
          • Singular matrix
          • Symmetric matrix
          • Unitary matrix
          • Batched matrix multiplication
          • Broadcast (algebra)
          • Conjugate transpose of a matrix
          • Determinant of a (square) matrix
          • Dot product of two vectors
          • Element-wise (Hadamard) product
          • Frobenius inner product
          • Frobenius norm
          • Matrix inverse
          • Matrix multiplication (product)
          • Matrix transpose
          • Orthogonal projection
          • Outer product of two vectors
          • Projection (projection matrix)
          • Pseudo-inverse of a matrix (Moore-Penrose)
          • Spectral norm
          • Eigenvalue decomposition for a square matrix
          • Matrix diagonalization
          • Singular value decomposition (SVD)
          • Covariance matrix
          • Curse of dimensionality
          • Information content of a random event
          • Information theory notation
          • Moment of a function
          • Moment-generating functions
          • Harmonic mean
          • Perplexity
          • Shannon entropy
          • Conditional entropy
          • Cross-entropy and Shannon entropy
          • Cross-entropy
          • Jensen-Shannon (JS) divergence (JSD)
          • Kullback-Leibler (KL) divergence ("relative entropy")
          • Mutual information
          • Population stability index, (Jeffreys distance, PSI)
          • Response of JSD and PSI to a rare event
          • Wasserstein metric (Earth mover's distance, EMD)
          • Chebyshev distance (L-infinity norm)
          • Cosine similarity
          • Euclidean distance (L2 norm)
          • Hamming distance
          • Inner product (dot product) similarity
          • L-p norm (Minkowski distance)
          • Mahalanobis distance
          • Manhattan (taxicab) distance (L1 norm)
        • Complex conjugate
        • Dirac delta "function"
        • Finite state machine
        • Heaviside step function
        • Kroenecker delta function
          • Naradaya-Watson regression
                Home

                ❯

                Foundations of ML

                ❯

                Statistics and Information Theory

                ❯

                Measuring distance

                Measuring distance

                8 items under this folder.

                • Dec 23, 2024

                  Manhattan (taxicab) distance (L1 norm)

                  • Dec 23, 2024

                    Mahalanobis distance

                    • Dec 23, 2024

                      L-p norm (Minkowski distance)

                      • Dec 23, 2024

                        Inner product (dot product) similarity

                        • Dec 23, 2024

                          Hamming distance

                          • Dec 23, 2024

                            Euclidean distance (L2 norm)

                            • Dec 23, 2024

                              Cosine similarity

                              • Dec 23, 2024

                                Chebyshev distance (L-infinity norm)


                                Created with Quartz v4.4.0 © 2024

                                • Terms of Use
                                • LinkedIn
                                • Buy me a coffee